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Abstract

We provide an exact expression for the magnetic field produced by cylindrical saddle-shaped coils and their ideal shield currents
in the low-frequency limit. The stream function associated with the shield surface current is also determined. The results of the anal-
ysis are useful for the design of actively shielded radio-frequency (RF) coils. Examples pertinent to very low field nuclear magnetic
resonance (NMR) and magnetic resonance imaging (MRI) are presented and discussed.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A saddle-shaped coil produces a central magnetic
field that is transverse to its cylindrical axis, and thus
constitutes an appropriate building-block for the con-
struction of wire-wound transmit and/or receive coils
to be used within solenoidal MR magnets. While the
low self-resonance frequency of wire-wound RF
coils—due to stray capacitance [1]—tends to preclude
their use in most NMR and MRI applications, a grow-
ing interest in very low field techniques (e.g., prepolar-
ization [2,3], hyperpolarized gases [4–6]) provides
strong motivation to explore the design of such coils
in much greater detail. This is underscored by the fact
that typical RF resonator designs—such as the birdcage
resonator [1,7,8]—are poorly suited for low-frequency
operation, owing to the increased difficulty of tuning
their inherently low self-inductance [9]. We use the cylin-
drical saddle-shaped current element shown in Fig. 1 as
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the elementary building-block from which shielded RF
coils, suitable for low-frequency operation, can be
constructed.

The task of shielding the magnetic field produced by
low-frequency coils is nontrivial and generally requires
the use of active rather than passive shields [10,11]. This
approach has been applied widely to the design of gradi-
ent coils [12,7] as well as to shim coils [13]. Passive
shielding of RF coils is more convenient in high-fre-
quency applications where a simple metallic enclosure
of sufficient thickness will support the induced surface
current (i.e., eddy current) flow needed to contain B1

fields or screen spurious external fields. This approach
becomes problematic if the RF frequency is comparable
to or less than the switching frequency of applied gradi-
ent fields, since a shield designed to contain the former
will also exclude the latter. In this case, one must resort
to active shielding. Here the metallic enclosure is re-
placed by a distribution of wires that, when driven by
an appropriate current, simulates the surface current
that would otherwise have been induced on the enclo-
sure by the RF field. The design of the active shield is

mailto:cpbidino@sfu.ca


Fig. 1. The geometry of the cylindrical saddle-shaped coil. The vertex
p 0 is the point (a,u, l) in cylindrical coordinates. The current I produces
a transverse magnetic field along the x-direction at the coil isocenter.
The appropriate current distribution on the surface q = b (cut away)
will completely cancel the field beyond this radius.
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determined from a knowledge of this shield surface
current, which in turn is linked to the current configura-
tion of the RF coil via its magnetic field [11].

The magnetic field of the unshielded saddle-shaped
coil has been studied previously by many authors [14–
22]. For example, Ginsberg and Melchner [15] give the
field at the isocenter of the coil and determine conditions
for minimizing its second derivatives; Hoult [17] pro-
vides an expansion about the isocenter in terms of an
infinite series of spherical harmonics; while Hanssum
[19] calculates an exact solution in terms of elliptic inte-
grals. In this work, we follow the approach of Turner
and Bowley [11] and write the magnetic field of the per-
fectly shielded saddle-shaped coil using a Green func-
tion1 expansion. The analysis gives an exact solution
for the shield surface current in terms of the coil param-
eters and can be used to design actively driven shields.

1.1. Outline

This paper is arranged as follows. In Section 2, a gen-
eral formula for the magnetic field of cylindrically con-
strained surface currents is provided, and the
condition for perfect shielding is determined. We discuss
the concept of the stream function [24] and derive a
means for determining discrete current approximations
to the surface currents of interest here. In Section 3,
we use these general results to derive the corresponding
expressions for the cylindrical saddle-shaped coil. We
analyze the transverse magnetic field component of the
perfectly shielded coil and discuss optimization of its
homogeneity. In Section 4, two examples are presented
that demonstrate the utility of this work for the design
of actively shielded RF coils suitable for low-frequency
NMR and MRI. Finally, a number of appendices are
provided to give details of derivations, show correspon-
dence to well known results, and collect important con-
1 We adopt the nomenclature of Jackson (see Preface to the Second
Edition [23]) and use the term ‘‘Green function’’ rather than ‘‘Green�s
function.’’
ceptual knowledge about transverse magnetic field
generation.
2. Cylindrically constrained surface currents

2.1. The magnetic field

In cylindrical coordinates, a current density con-
strained to the surface q = s is written

J ¼ F /ð/; zÞe/ þ F zð/; zÞez
� �

dðq� sÞ; ð1Þ

where F/ (Fz) is the surface current component in the
azimuthal (axial) direction and d (f) is the Dirac delta
function. The magnetic field produced by J can be ex-
pressed in terms of a Fourier expansion of F/ and Fz

[11]. The Fourier components are given by

F m
/ðkÞ
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z ðkÞ
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and are linked to one another through the relationship

mF m
/ðkÞ ¼ �ksF m

z ðkÞ; ð3Þ

which follows from the equation of continuity, $ � J ¼ 0
[11]. Using Eq. (3), a very compact form of the magnetic
field can be written in terms of either the azimuthal or axi-
al Fourier components of the surface current (see Appen-
dix A for details).

For the specific case of interest in this paper, where
we consider currents J = F d (q � a) and j = f d (q � b),
the components of the magnetic field are
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where we define the functions

PmðsÞ ¼
I 0mðkqÞK 0

mðksÞ; when q < s

I 0mðksÞK 0
mðkqÞ; when q > s

�
ð5Þ

and

QmðsÞ ¼
ImðkqÞK 0

mðksÞ; when q < s

I 0mðksÞKmðkqÞ; when q > s

�
ð6Þ

with Im (Km) being the modified Bessel function of the
first (second) kind and I 0mðK 0

mÞ its derivative. The mag-
netic field may be equivalently written in terms of
F m

/ðkÞ and f m
/ ðkÞ.

2 In either form, Eq. (4) is perfectly
2 As amatter of bookkeeping, the latter form is likely to be preferred in
cases where the m = 0 component of an azimuthal current is nonzero.
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general, describing completely the magnetic field that
arises from any continuous surface currents F and f con-
strained to cylindrical surfaces q = a and b, respectively.
We also note that when it is written in this form, Eq. (4)
is readily generalized to include contributions from cur-
rents on any number of coaxial cylindrical surfaces.

2.2. Perfect shielding

Inspection of Eq. (4) reveals that the condition for
perfect shielding (i.e., B = 0 for q > b) is satisfied when

f m
z ðkÞ ¼ � a2I 0mðkaÞ

b2I 0mðkbÞ
F m

z ðkÞ; ð7Þ

or equivalently when

f m
/ ðkÞ ¼ � aI 0mðkaÞ

bI 0mðkbÞ
F m

/ðkÞ. ð8Þ

Eqs. (7) and (8) were originally derived by Turner and
Bowley [11]. They allow one to determine the surface
current f (/, z) on q = b required to shield the magnetic
field due to any continuous surface current F (/,z) from
a known coil configuration on q = a.3

The inverse Fourier transform

f/ð/; zÞ
fzð/; zÞ

�
¼ 1

2p

X1
m¼�1

eim/
Z 1

�1
dk eikz

f m
/ ðkÞ
f m
z ðkÞ

�
ð9Þ

gives the spatial components of the shield surface current.
The objective for constructing actively driven shields is to
approximate f/ and fz with discrete line currents. The use
of the stream function, discussed below, facilitates this
task.

2.3. The stream function

It follows from the general properties of a divergence-
less vector field [25] that there exists a vector potential w
such that:

j ¼ $� w ð10Þ
for any continuous current density j. For the class of
problems considered here, where the current density
j = f (/, z)d(q � b) is constrained to a cylindrical surface,
the vector potential need only have a single radial compo-
nentw = w (/,z)eq. The stream functionw is related to the
components of the surface current through the equations

f/ ¼ ow
oz

and f z ¼
�1

b
ow
o/

ð11Þ

and can be determined from either once f/ or fz is known
[24]. The stream function has the extremely useful prop-
erties that its contours are tangential to the flow lines of
3 An exception arises for the case of an infinitely long straight wire.
This issue is discussed in Appendix B.
f on q = b and that equispaced contours bound regions
of equal integrated surface current. As a result, equi-
spaced contours of w represent paths of equivalent line
current and the stream function can be used to directly
determine coil winding patterns that approximate the
desired surface current [24].

The shield surface currents f = f/ (/,z)e/ + fz (/,z)ez
to be considered in this work will have the same symme-
try as the saddle-shaped coil: f/ is cosine-symmetric in /
and an odd function of z, while fz is sine-symmetric in /
and an even function of z. As a result, we can restrict our
determination of wire positions to the first quadrant,
i.e., / = 0 to p/2. To begin, we calculate the total cur-
rent per quadrant flowing on a shield

Is �
Z p=2

0

fzð/; 0Þbd/;¼ wð0; 0Þ ð12Þ

noting thatw (p/2,z) = 0 due to symmetry. Now, if we are
to approximate f using N wires per quadrant, each carry-
ing the same in-phase current Is / N, then the wires must
be located along contours of the stream function dis-
placed from one another by the amount w (0,0)/N. Nor-
malized to w(0,0), the first winding (closest to / = z = 0)
is on the contour (1 � 1/2N), the second on (1 � 3/2N),
the third on (1 � 5/2N), et cetera. In general then, the
jth wire is to be placed on the contour given by the locus
of points {/j,zj} that satisfy

wð/j; zjÞ
wð0; 0Þ ¼ 1� 2j� 1

2N
ð13Þ

for all 0 6 /j 6 p/2. The loci of points {±/j,zj} in the
first and fourth quadrant respectively combine to form
closed current loops, as do {p ± /j, zj} in the third
and second quadrants.
3. The magnetic field and shield currents of the cylindrical
saddle-shaped coil

The geometry of the cylindrical saddle-shaped coil
shown in Fig. 1 is defined by three parameters: l is the
coil half-length, a is the radius of the cylinder on which
the coil is wound, and u is the angle that locates the axi-
al current paths. Carrying a current I, the saddle-shaped
coil forms the surface current:

F zð/;zÞ¼
I
a
½�dð/þp�uÞ�dð/þuÞþdð/�uÞ

þdð/�pþuÞ�� ½Hðzþ lÞ�Hðz� lÞ�; ð14Þ

F /ð/;zÞ¼ I ½1�Hð/þp�uÞ�Hð/þuÞþHð/�uÞ
þHð/�pþuÞ�� ½�dðzþ lÞþdðz� lÞ�; ð15Þ

where H(f) is the Heaviside step function. Substitution
into Eq. (2) gives the Fourier components of the coil
surface current:



10

B
ρ(0

,0
,0

) 
/ B

c

l/Aspect Ratio

0

1/4

1/2

3/4

1

0.1 1

Fig. 2. The normalized magnetic field at the isocenter of the shielded
saddle-shaped coil as a function of k plotted for various b. The field
strength is independent of k when k� 1. The contribution from
azimuthal current paths leads to a peak in Bq(0,0,0); for b =1
(unshielded coil) this occurs when k ¼

ffiffiffi
2

p
.

34 C.P. Bidinosti et al. / Journal of Magnetic Resonance 177 (2005) 31–43
F m
z ðkÞ ¼

�i4I
pka

sin kl sinmu dm;odd; ð16Þ

F m
/ðkÞ ¼

i4I
pm

sin kl sinmu dm;odd; ð17Þ

which, via Eqs. (7) and (8), give:

f m
z ðkÞ ¼

i4Ia

pkb2
I 0mðkaÞ
I 0mðkbÞ

sin kl sinmu dm;odd; ð18Þ

f m
/ ðkÞ ¼

�i4Ia
pmb

I 0mðkaÞ
I 0mðkbÞ

sin kl sinmu dm;odd; ð19Þ

the Fourier components of the surface current on
q = b > a required to perfectly shield the coil.

The total magnetic field of the coil and shield is found
by substitution of Eqs. (16) and (18) into Eq. (4). It is
identically zero for all q > b. In the region q < a, interior
to the coil, the field components are
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On the central axis of the coil, Bz vanishes—which is
evident by symmetry—and only them = 1 term survives4

in the expressions for Bq and B/. At the isocenter of coil,
with / = 0, the magnetic field has only the radial
component

Bqð0;0;0Þ ¼ Bc
kð2þ k2Þ
ð1þ k2Þ3=2

(

þ 2

p

Z 1

0

djj sinjk
I 01ðjÞ
I 01ðjbÞ

K 0
1ðjbÞ

�
; ð21Þ

where Bc = 2lo Isinu/(pa) and the dimensionless param-
eters are k = l/a, b = b/a, and j = ka. The first term in
Eq. (21) is the contribution from the coil and agrees with
the result given by Ginsberg andMelchner (see Eq. (1) of
[15]); the second term is the contribution from the shield,
which leads to a reduction of the total magnetic field
inside the coil. In the limit that the aspect ratio l/a
(i.e., k) of the coil is large, Eq. (21) reduces to

B1
q ð0; 0; 0Þ ¼ Bc 1� 1

b2

� �
; ð22Þ

which is independent of k. This asymptotic behaviour is
apparent in the plot of Bq (0,0,0) versus k shown in
Fig. 2.
4 In the limit qfi 0, the modified Bessel function Im(kq) fi (kq/
2)m/m! and its derivative I 0mðkqÞ ! 1

2 ðkq=2Þ
m�1=ðm� 1Þ! for m > 0.
The homogeneity of the magnetic field produced by
the cylindrical saddle-shaped coil can be optimized by
eliminating all second derivatives of the field at the iso-
center [15]. An alternative approach, suitable in many
cases, is to require that only the second derivative of
the transverse component o2Bq(q, 0,0)/oq

2 vanishes.
For the shielded coil, this leads to the relationship

9 sinu
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djj3 sin jk K 0
1ðjÞ �

I 01ðjÞ
I 01ðjbÞ

K 0
1ðjbÞ

� �

¼ � sin 3u
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0

djj3 sin jk K 0
3ðjÞ �

I 03ðjÞ
I 03ðjbÞ

K 0
3ðjbÞ

� �
;

ð23Þ

which can be solved numerically for one of the parame-
ters u, k, or b provided the other two are given. Fig. 3
shows a plot of uopt—the angle u that satisfies Eq.
(23)—as a function of k and b. In the limit k fi 1,
uopt = 60� independent of the proximity of the shield
to the coil.

We further note that Eq. (23) reduces to

9ðk2 � 4Þ sinu ¼ ð20þ 35k2 þ 28k4 þ 8k6Þ sin 3u ð24Þ

for b = 1 (the unshielded coil), and that the same con-
straint is found by setting Eq. (3) from Ginsberg and
Melchner [15] to zero. Their result that uopt = 60� for
k = 2 is evident from Eq. (24). For a coil with
k = 1.6554, we find uopt = 60.384� which is consistent
with the value uopt = 60.38� quoted by Abel et al. [14].
Both of these coil configurations are indicated on the
b =1 curve in Fig. 3.

Returning our attention to the active shielding of
cylindrical saddle-shaped coils, the inverse transform
of Eqs. (18) and (19) gives
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Fig. 3. The angular position uopt of the axial current paths that
optimize the magnetic field homogeneity of a shielded saddle-shaped
coil. When k� 1, uopt = 60� independent of b. The configuration of
the unshielded coil noted by Abel et al. [14] is indicated by the circle.
For the well known configuration (uopt = 60�, k = 2), indicated by the
asterisk, all second derivatives of the field are zero at the isocenter
[15,16].
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for the components of the shield surface current on
q = b. These equations give the eddy-current distribu-
tion that would be induced on a passive shield, e.g., a
highly conducting metallic cylinder that is very long
compared to the coil. To approximate this distribution
using the discrete line currents of an active shield, one
makes use of the stream function

wð/; zÞ ¼ �8Ia
p2b

X1
m¼1;3;5...

cosm/ sinmu
m

�
Z 1

0

dk
cos kz sin kl

k
I 0mðkaÞ
I 0mðkbÞ

; ð27Þ

found by integrating either Eq. (25) or Eq. (26) as de-
scribed in Section 2.3. Evenly spaced contours of Eq.
(27) give the wire positions in the shield. An example
is discussed in Section 4.2.

3.1. The infinitely long saddle-shaped coil: 2D description

While in practice the construction of very long coils is
rarely of interest, one should be familiar with the 2Dmag-
netic field profile of the infinitely long current structure
since it provides a very useful conceptual tool for coil de-
sign. Thepertinent results can bederived from those of the
preceding section recognizing that sinkl/(pk) fi d(k) in
the limit lfi 1.

Alternatively, one may begin with the surface current
of the infinitely long, saddle-shaped coil

F zð/Þ ¼
I
a
½�dð/þ p� uÞ � dð/þ uÞ þ dð/� uÞ

þ dð/� pþ uÞ�; ð28Þ

which has the Fourier transform

F m
z ðkÞ ¼ �i

4I
a

sinmudm;odd dðkÞ ð29Þ

and which, in turn, leads to

f m
z ðkÞ ¼ i

4I
b

sinmu
a
b

� 	jmj
dm;odd dðkÞ ð30Þ

for the Fourier transform of the shield surface current
on q = b. Substitution of the latter two equations into
Eq. (4) gives the total magnetic field, which, in the re-
gion q < a, is

Bq

B/


 �
¼ 2loI

pa

X1
m¼1;3;5...

sinmuðq=aÞm�1

� 1� a=bð Þ2m
h i cosm/

� sinm/
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.

ð31Þ

The first term in square braces is due to the coil and can
be verified using the well-known result for the magnetic
field due to a long straight wire (see Appendix C). On
the central axis, with / = 0, Eq. (31) reduces to Eq. (22).

Finally, the inverse transform of Eq. (30) gives the
shield surface current for the infinitely long coil

fzð/Þ ¼
�4I
pb

X1
m¼1;3;5...

sinm/ sinmu
a
b

� 	m
ð32Þ

with

wð/Þ ¼ �4I
p

X1
m¼1;3;5...

cosm/ sinmu
m

a
b

� 	m
ð33Þ

being the associated stream function.
4. Examples

4.1. Reducing RF power deposition on a cryostat

The efficacy of an active shield improves with the
number of discrete currents used to approximate the ide-
al shield surface current. To demonstrate this we consid-
er the use of an active shield to reduce the power
deposited on the inner surface of a conducting cylindri-
cal surface due to the oscillating magnetic field of an in-
ner transmit coil. This situation may occur in a low
temperature NMR experiment where the apparatus is
contained within a cylindrical metallic cryostat. Here



Table 1
Configuration and efficacy of the active shield

N uj (degrees) g P

0 — 1 1
2 46.1, 72.9 1.368 0.022
3 39.5, 60, 78.1 1.361 0.0060
4 35.2, 53.7, 66.2, 80.9 1.358 0.0026
5 32.0, 49.4, 60, 70.1, 82.6 1.356 0.0013

The shield comprises N coil elements, whose positions are given by the
angles uj. The normalized current g is required for a standard magnetic
field. The efficacy of the shield is characterized by P, the total power
per unit length deposited on the cylinder normalized to the unshielded
case (N = 0).
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RF-pulses from an unshielded transmit coil will induce
eddy currents on the cryostat that may adversely affect
its intended performance. Under such circumstances it
would be desirable to decouple the coil from the cryostat
using an actively driven shield.

To explore this quantitatively, we calculate the power
deposited on a conducting cylindrical surface q = c due
to a transmit coil at q = a < c as a function of the num-
ber of current elements in an active shield that is situated
between the two at q = b. We use radii of ratio
a:b:c = 2:3:4, and, for simplicity, take all three structures
to be infinitely long. The geometry of the problem is
shown in the inset of Fig. 4. For the purpose of this
demonstration, the transmit coil is taken to be a sin-
gle-turn saddle-shaped coil with optimal angle u = 60�.
The active shield comprises N saddle-shaped coil ele-
ments each of angle uj determined using the appropriate
stream function.

To begin we note that the surface current induced on
the cylinder is calculated using Eq. (32). The contribu-
tion due to the transmit coil is

fccð/Þ ¼
�2Ic
pa

X1
m¼1;5;7...

sinm/ sinðmp=3Þ 1

2


 �m

ð34Þ

with the summation being over odd values of m not
equal to a multiple of 3. The contribution due to the
shield is

fcsð/Þ ¼
XN
j¼1

�2Is
pa

X1
m¼1;3;5...

sinm/ sinmuj
3

4


 �m

. ð35Þ

The current Is and angles uj are determined for a given
value of N through the the use of the stream function

wsð/Þ ¼
�4Ic
p

X1
m¼1;5;7...

cosm/ sinmp=3
m

2

3
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Fig. 4. Square of the induced surface current on cylinder due to inner
transmit coil. Results are shown for the case with no shield,N = 0 (solid
line), as well as for shields comprising N = 3 (dashed line) and N = 5
(dotted line) coil elements. Inset diagram: transmit coil on q = a; active
shield constructed on q = b; conducting metallic cylinder on q = c.
associated with the surface current on q = b that would
perfectly shield the transmit coil. From Eq. (12), the cur-
rent to be carried by each of the N coil elements in the
shield is Is = ws(0)/N, which evaluates to �0.715 · Ic/N
in this example. The angular position of the jth coil in
the shield is found by satisfying the condition of Eq.
(13). Table 1 gives all uj for N = 2 to 5.

The magnetic field Bcc (Bcs) due to the coil (shield)
and its induced surface current on the cylinder are found
using Eq. (31). The total magnetic field on the axis is

Bc ¼ Bccð0; 0Þ þ Bcsð0; 0Þ

¼ loIc
pa

3
ffiffiffi
3

p

4
� 0.715� 7

12N

XN
j¼1

sinuj

( )
. ð37Þ

To properly determine the efficacy of the shield, we must
ensure that the field Bc is the same for any given N. This
requires that the current Ic be multiplied by the factor

g ¼ Bccð0; 0Þ
Bccð0; 0Þ þ Bcsð0; 0Þ

ð38Þ

that depends on the number of coil elements used in the
shield. Values of g are given in Table 1; note that in the
limit N fi 1, the ideal shield surface current exists on
q = b and g fi 1.35 exactly.

The power per unit length deposited on the cylinder is
proportional to

f 2
c ¼ g2ðfcc þ fcbÞ2 ð39Þ
which is the square of the total induced surface current.
This is plotted as a function of angle in Fig. 4 for various
N to highlight the effect of shielding. The total integrat-
ed power (the area under the curve f 2

c ) is given in Table
1 normalized to the unshielded case. A shield with N = 2
is sufficient to reduce the power deposited on the cylin-
der to �2%; doubling the number of elements in the
shield to N = 4 further reduces the absorbed power by
an order of magnitude.

4.2. Transmit coil for very low field MRI

Magnetic resonance imaging of the human body re-
quires a transverse B1 field that is uniform over a large



Fig. 5. Contour map of the transverse magnetic field (as a percent
difference from the central field) for the coil of half-length l = 2a (top)
and 1.5a (bottom). The shaded regions (±2%) highlight differences
between the two geometries.
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volume. One approach that can be taken to minimize
the design constraints on low-frequency RF systems is
to use separate transmit and receive coils. This allows
one to increase the size of the transmit coil for better
homogeneity without an accompanying reduction in
the filling factor on the receive end [1]. This approach
has been used recently in very low field NMR and
MRI measurements of 3He in the human lung [4,5]. In
that work, an unshielded wire-wound transmit coil, sep-
arate from a detection coil system, was designed to gen-
erate RF-pulses uniform to within 5% over a volume
comparable to the human lung space
(Dx = Dz = 2Dy = ±15 cm from coil isocenter). The
field homogeneity of this coil was sufficient to re-focus
thousands of 3He spin-echoes with negligible p-pulse
losses [5].

Here we demonstrate that a transmit coil of compara-
ble quality can be readily designed from a reasonable
number of saddle-shaped current elements. We choose
M = 5 elements as a practical number. We examine
two coil designs of different aspect ratio, l/a = 2 and
1.5, and in both cases take a = 22.5 cm as a suitable
radius for a human-sized coil. The five current elements
are to be driven in series and are assumed to be operated
at sufficiently low frequency that the current I is every-
where in-phase.5 For simplicity, the angular positions
of the five elements (uj = {25.8�, 45.6�, 60�, 72.5�,
84.3�}) were determined from the stream function of
the sine–phi surface current distribution (see Appendix
D), which is equivalent to using a target field approach
[7,12,24] with a target field homogeneous over q < a and
independent of z.

The transverse component of the magnetic field

Bx ¼ Bq cos/� B/ sin/ ð40Þ
is calculated for the saddle-shaped current element using
Eqs. (16) and (4) with f m

z ðkÞ ¼ 0. In the central plane
(/ = 0), the internal transverse field produced by a coil
of M series driven elements is

Bx ¼
�8loIa

p2

XM
j¼1

X1
m¼1;3;5;...

sinmuj

m

Z 1

0

dk k sin klj

� cos kz K 0
mðkaÞI 0mðkxÞ; ð41Þ

where in general the length lj of each element may be dif-
ferent. We use this equation to compute field maps for
the two transmit coil designs considered here. The re-
sults are shown in Fig. 5; both designs offer very good
field homogeneity, with the longer coil being the better
of the two.
5 Note that such coils produce a linearly polarized magnetic field and
therefore are not necessarily as efficient as a resonator for spin rotation
[8].
4.2.1. A series-driven active shield using saddle-shaped

current elements

In general, the integrated value of the ideal shield sur-
face current (Eq. (25) into Eq. (12)) for a saddle-shaped
current element is always Is = �pI, where p 6 1 and de-
pends on the shield radius b. Notice then that for a trans-
mit coil comprising M saddle-shaped current elements
and total integrated current MI, it is possible to choose
b such that p = N/M is a rational number; and a shield
can thus be constructed using an integer N < M current
elements (not forcibly saddle-shaped aswill be seen). Also
notice that such a configuration is extremely convenient
to use, since the shield can be driven in series with the
transmit coil using the same current source.



Fig. 6. Top panel: Contour plot of the surface current required to
perfectly shield the long transmit coil of Fig. 5. Only the region
z = ±75 cm is shown. Darker shading indicates a higher value. Bottom
panel: four equispaced stream function contours (dashed lines). Their
positions along z = 0 and / = 0 (i.e., uj = {28.2�, 50.8�, 67.7�, 82.7�}
and lj = {35.4,43.1, 47.2,55.9} cm) define four saddle-shaped current
elements (solid lines).
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To determine b for a chosen N, one makes use of the
stream function

wsð/; zÞ ¼
�8Ia
p2b

XM
j¼1

X1
m¼1;3;5...

cosm/ sinmuj

m

�
Z 1

0

dk
cos kz sin klj

k
I 0mðkaÞ
I 0mðkbÞ

; ð42Þ

which comes from Eq. (27); conjugate values of b and N

satisfy the condition Is = �NI where Is = ws (0,0). For
example, a series-driven active shield for the long trans-
mit coil mentioned above can be constructed with N = 4
current elements on the radius b = 27.9 cm. The current
elements are placed on the equispaced contours of the
stream function which are given by the loci of points
{/j,zj} found using Eq. (42) in Eq. (13). These are
shown in Fig. 6 along with a contour plot of the shield
surface current,6 which is found by substitution of Eq.
(42) into Eq. (11). One can see that a closer physical
spacing of the stream function contours corresponds
to a higher value of the shield surface current.

For ease of construction, one may choose to make a
further approximation and use saddle-shaped current
elements for the shield, as shown in Fig. 6. This has
the added advantage that one can readily calculate the
magnetic field contribution from the shield using the
expressions given in this paper. For example, Bx is calcu-
lated using the appropriate form of Eq. (41), and plots
of the transverse field produced by the shielded and
unshielded coil are shown in Fig. 7.

4.2.2. Further considerations

The coil designs discussed above are suitable for gener-
ating very homogeneous tipping pulses over a volume
comparable to that of the human lungs. These designs
were based on the ideal sine–phi surface current distribu-
tion and have not been optimized further with respect to
finite length. However, with the expressions for the mag-
netic field of the saddle-shaped current element developed
in this paper, one can readily explore the limited parame-
ter space (uj and lj for a given coil radius) to optimize
quantities such as field homogeneity or shielding. One
might also choose to use the magnetic field of the sine–
phi distribution, appropriately apodized over z, as a tar-
get field [7,12,24] to generate more complex winding pat-
terns with potentially improved field characteristics. Of
course, as suggested above, one might still opt to approx-
imate these winding patternswith saddle-shaped elements
to take advantage of their ease of construction and the
well-defined expressions for B given here.

The most straightforward way to improve both the
homogeneity and shielding of a coil is to simply increase
6 Note that the stream function, like the shield surface current, tends
to zero as z fi ±1 and that no truncation of this function is required
to constrain the position of the outermost current element.
the number of saddle-shaped current elements used in its
construction. One should keep the following in mind
if proceeding in this direction. First, as the number of



Fig. 8. Current flow constrained to a cylindrical surface q = s.
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current elements is increased, so do the self-inductance
and capacitance of the coil which lowers its self-reso-
nance and limits its usable frequency range. Second,
the length of the contiguous wire used to construct the
coil may become comparable to the wavelength of light
at the desired operating frequency. Under such condi-
tions, the assumption that the current is in-phase
throughout the coil will not be met and calculated field
profiles will not be accurate. This effect may have con-
tributed to a slight asymmetry (<0.5%) observed in the
homogeneity of a transmit coil previously designed
and built for very low field MRI [26].
5. Summary

In this paper, we have considered the use of the cylin-
drical saddle-shaped coil as the building-block for the
construction of wire-wound RF coils with active shields.
We have attempted to supply a complete set of mathe-
matical and conceptual tools for this purpose, and have
striven to demonstrate their utility with the examples
provided. In particular, expressions for the magnetic
field produced by the saddle-shaped coil and the stream
function associated with its ideal shield surface current
should prove very useful for the design of actively
shielded low-frequency RF coils. Shielded transmit coils
offer a homogeneous B1 field unperturbed by induced
currents in external structures; likewise, by the principle
of reciprocity [16], shielded receive coils offer a uniform
sensitivity to the sample signal decoupled from external
fields. Such coils should find application in very low field
NMR and MRI, where RF resonators become difficult
to operate and passive shielding techniques interfere
with the production of switched gradient fields. The re-
sults of Section 3 are also useful for the calculation of
eddy currents induced on cylindrical metallic enclosures
by saddle-shaped coils, as well as for the determination
of the total magnetic field produced by the two.
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Appendix A. The magnetic field produced by a

cylindrically constrained surface current

A general current density J confined to flow on a
cylindrical surface q = s is shown in Fig. 8 and is de-
scribed by Eq. (1) of Section 2. Since there is no radial
current flow, the components of the vector potential A
at the point r are

Aq

A/

Az

0
B@

1
CA ¼ lo

4p

Z
dv0

jr� r0j

J/ðr0Þ sinð/� /0Þ
J/ðr0Þ cosð/� /0Þ

J zðr0Þ

0
B@

1
CA; ðA:1Þ

where J/ (Jz) is the azimuthal (axial) component of the
current density at the point r 0. The integration is over
the primed coordinates with volume element
dv 0 = q 0 dq 0 d/ 0 dz 0.

In cylindrical coordinates, this equation can be
expanded using the Green function

1

jr� r0j ¼
2

p

X1
m¼�1

eimð/�/0Þ
Z 1

0

dk coskðz� z0ÞImðkq<ÞKmðkq>Þ;

ðA:2Þ

where Im (Km) is the modified Bessel function of the first
(second) kind and q<(q>) is the smaller (larger) of q and
q 0 [23]. Following the approach of Turner and Bowley
[11], however, a more compact notation is achieved7 if
one uses the definition

1

jr� r0j ¼
1

p

X1
m¼�1

eimð/�/0Þ
Z 1

�1
dk eikðz�z0ÞImðkq<ÞKmðkq>Þ.

ðA:3Þ
Integrating Eq. (A.1) over q 0 and making use of Eq.

(A.3) gives

Aq

A/

Az

0
B@

1
CA ¼ los

4p

X1
m¼�1

eim/
Z 1

�1
dk eikz

�
�i Gm�1ðsÞ � Gmþ1ðsÞ½ �F m

/ðkÞ
Gm�1ðsÞ þ Gmþ1ðsÞ½ �F m

/ðkÞ
2GmðsÞF m

z ðkÞ

0
B@

1
CA;

ðA:4Þ
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where

GmðsÞ ¼
ImðkqÞKmðksÞ; when q < s

ImðksÞKmðkqÞ; when q > s

�
ðA:5Þ

and F m
/ðkÞ and F m

z ðkÞ are defined in Eq. (2).
The magnetic field B ¼ $� A is calculated from

Eq. (A.4) using the appropriate form of the curl
operator. For the radial component of B this
gives

Bq ¼
lo s
4pi

X1
m¼�1

eim/
Z 1

�1
dk eikz

� k Gm�1ðsÞ þ Gmþ1ðsÞð ÞF m
/ðkÞ �

2m
q

GmðsÞF m
z ðkÞ

� �
ðA:6Þ

which can be simplified by first substituting for
F m

/ðkÞ from Eq. (3) and then making use of the
identity

�2I 0mðf1ÞK 0
mðf2Þ ¼ Im�1ðf1ÞKm�1ðf2Þ þ Imþ1ðf1ÞKmþ1ðf2Þ

þ 2m2

f1f2
Imðf1ÞKmðf2Þ ðA:7Þ

given in [11]. The result is

Bq ¼
los

2

2p

X1
m¼�1

eim/
Z 1

�1
dk eikz

k2

im
PmðsÞF m

z ðkÞ; ðA:8Þ

where the function Pm (s) is defined in Eq. (5).
Similar compact forms are found for the azimuthal

and axial field components and are stated here for
completeness:

B/ ¼ lo s
2

2p

X1
m¼�1

eim/
Z 1

�1
dk eikz

k
q
QmðsÞF m

z ðkÞ; ðA:9Þ

Bz ¼
los

2

2p

X1
m¼�1

eim/
Z 1

�1
dk eikz

k2

m
QmðsÞF m

z ðkÞ; ðA:10Þ

where the function Qm (s) is defined in Eq. (6). The der-
ivations make use of the identities

2Imðf1ÞK 0
mðf2Þ

f1
þ 2I 0mðf1ÞKmðf2Þ

f2

¼ �1

m
Im�1ðf1ÞKm�1ðf2Þð � Imþ1ðf1ÞKmþ1ðf2ÞÞ; ðA:11Þ

� 2Imðf1ÞK 0
mðf2Þ

¼ 1� m
f1

Im�1ðf1ÞKm�1ðf2Þ þ
1þ m
f1

Imþ1ðf1ÞKmþ1ðf2Þ

þ I 0m�1ðf1ÞKm�1ðf2Þ þ I 0mþ1ðf1ÞKmþ1ðf2Þ; ðA:12Þ

� 2I 0mðf1ÞKmðf2Þ

¼ 1� m
f2

Im�1ðf1ÞKm�1ðf2Þ þ
1þ m
f2

Imþ1ðf1ÞKmþ1ðf2Þ

þ Im�1ðf1ÞK 0
m�1ðf2Þ þ Imþ1ðf1ÞK 0

mþ1ðf2Þ; ðA:13Þ
which can be derived from the recurrence formulae for
modified Bessel functions.
Appendix B. Shielding 2D magnetic fields

A purely azimuthal or axial current will give rise to a
magnetic field that is a function of two spatial variables
only: q and z in the former case, and q and / in the lat-
ter. If the current is continuous, with no charge accumu-
lation, then the magnetic field is still given by Eq. (4) and
the shielding conditions by Eqs. (7) and (8). These
expressions are not valid, however, if there is a charge
source/sink at infinity, such as in the case of the infinite-
ly long wire.

To see this consider the surface current F = Fz (/)ez
extending toz = ±1onq = a.Withnoazimuthal compo-
nent and Fz independent of z, its Fourier transform is
simply

F m
/ðkÞ ¼ 0; ðB:1Þ

F m
z ðkÞ ¼ F m

z dðkÞ ðB:2Þ
with components F m

z independent of k. We now seek the
surface current f = fz (/)ez on q = b > a that will perfect-
ly shield the magnetic field due to F. Making use of Eq.
(A.4), the total vector potential in the region q > b is

Az ¼
lo

2p

X1
m¼�1

eim/

�
Z 1

�1
dk eikzKmðkqÞ aImðkaÞF m

z ðkÞ þ bImðkbÞf m
z ðkÞ

� �
;

ðB:3Þ
which vanishes when

f m
z ðkÞ ¼ � aImðkaÞ

bImðkbÞ
F m

z ðkÞ ðB:4Þ

is satisfied. This condition is only relevant for surface cur-
rents of the form described above. It can be simplified to

f m
z ðkÞ ¼ �F m

z dðkÞða=bÞ
jmjþ1 ðB:5Þ

by making use of Eq. (B.2). Note, however, that the sub-
stitution of Eq. (B.2) into the shielding condition of Eq.
(7) gives

f m
z ðkÞ ¼ �F m

z dðkÞ
ða=bÞ3; m ¼ 0;

ða=bÞjmjþ1
; m 6¼ 0;

(
ðB:6Þ

which results in an incorrect prefactor for the f 0
z ðkÞ

term: (a/b)3 instead of a/b. As a result, when the total
axial current aF 0

z ¼
R p
�p a d/ F zð/Þ is nonzero, the shield

surface current must be determined from Eq. (B.5) and
the magnetic field from Eq. (B.3).

An obvious illustration of this is the infinitely long
wire. Carrying a current I and located at the position
(a,u), its surface current is
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F zð/Þ ¼ ðI=aÞdð/� uÞ ðB:7Þ
which has the Fourier transform

F m
z ðkÞ ¼ ðI=aÞ expð�imuÞdðkÞ. ðB:8Þ

The surface current fz (/) on q = b required for
shielding is properly determined from Eq. (B.5) and
found to be

fzð/Þ ¼
�I
2pb

1þ 2
X1
m¼1

a
b

� 	m
cosmð/� uÞ

" #
; ðB:9Þ

which correctly reduces to the surface current on a co-
axial shield in the limit a fi 0.
8 The magnetic field produced by an object of uniform magnetization
M is identical to that due to a surface current F ¼ M � n̂, where n̂ is
the unit vector normal to the surface of the object [25]. Here
B = lo (H +M), and, in the absence of free charge, there exists a
magnetic scalar potential U such that H ¼ �$U. For the transversely
magnetized cylinder,M =M (cos / eq � sin / e/) from which one may
glean that U � qcos/ inside the cylinder and q�1cos/ outside the
cylinder. Satisfying boundary conditions completes the problem.
Appendix C. The magnetic field of an infinitely long wire

In cylindrical coordinates, the magnetic field due to
an infinitely long wire located at (a,u) and carrying a
current I is

B ¼ loI
2p

�a sinð/� uÞeq þ q� a cosð/� uÞð Þe/
q2 þ a2 � 2aq cosð/� uÞ .

ðC:1Þ

This well-known result can be rewritten using the iden-
tities [28]

r sin a
1� 2r cos aþ r2

¼
X1
m¼1

rm sinma; ðC:2Þ

1� r cos a
1� 2r cos aþ r2

¼ 1þ
X1
m¼1

rm cosma; ðC:3Þ

where r < 1. For q < a, the components of the magnetic
field are

Bq

B/


 �
¼ �loI

2pa

X1
m¼1

ðq=aÞm�1 sinmð/� uÞ
cosmð/� uÞ


 �
; ðC:4Þ

while for q > a, they are

Bq

B/


 �
¼ �loI

2pq

X1
m¼0

ða=qÞm
sinmð/� uÞ

� cosmð/� uÞ


 �
. ðC:5Þ

Notice that boundary conditions are satisfied at q = a:
the perpendicular component Bq is continuous, while
the tangential component B/ is discontinuous by the
amount

loI
a

1

2p

X1
m¼�1

cosmð/� uÞ ¼ loI
a

dð/� uÞ ðC:6Þ

due to the surface current Fz = I/a d (/ � u)ez. Also
note that Eqs. (C.4) and (C.5) can be derived using
Eq. (B.8) and the expression for Az from Eq.
(A.4).
For the infinitely long saddle-shaped coil on q = a,
with four wires located at ±u and ±(p � u) and carry-
ing currents ±I, the surface current is clearly that given
by Eq. (28). Its magnetic field can be calculated in the
region q < a (q > a) by summing the contribution from
each wire given by Eq. (C.4) (Eq. (C.5)).
Appendix D. The sine–phi surface current distribution

It is a commonly stated fact that a perfectly homo-
geneous transverse field can be generated inside a cylin-
drical volume using an infinitely long surface current of
the form F � sin/ez [1,7]. This sine–phi distribution
forms the conceptual basis of transverse B1 field gener-
ation; the construction of practical approximations to
this distribution is the central endeavor of B1 coil
design.

One can derive the magnetic field produced by the
sine–phi surface current distribution by solving the
equivalent problem for the infinitely long cylinder with
uniform transverse magnetization.8 In keeping with the
spirit of this paper, however, we follow the methods out-
lined in Section 2 and calculate the field from F, includ-
ing the contribution from an ideal shield surface current.

To begin, consider on q = a the infinitely long surface
current distribution

F ¼ Fo sin/ ez ðD:1Þ

which has Fourier components

F m
z ðkÞ ¼ �impFodðkÞdm;�1. ðD:2Þ

From Eq. (7) the Fourier components of the shield sur-
face current on q = b are

f m
z ðkÞ ¼ impFo

a2

b2
dðkÞdm;�1 ðD:3Þ

and making use of Eq. (9) one finds

f ¼ �ða=bÞ2Fo sin/ ez; ðD:4Þ

which is a also a sine–phi distribution. Substituting Eqs.
(D.2) and (D.3) in Eq. (4) gives a complete description
of the magnetic field:
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B ¼ loFo

2

ð1� a2=b2Þ cos/ eq � sin/ e/
� 


; q< a;

a2ðq�2 � b�2Þ cos/ eq

þa2ðq�2 þ b�2Þ sin/ e/; a< q< b;

0; q> b.

8>>>><
>>>>:

ðD:5Þ
In the region q < a, the field is perfectly homogeneous,
directed parallel the vector x̂ ¼ ðcos/ eq � sin/ e/Þ.
And, as desired, it is everywhere zero for q > b.

D.1. Line current approximation to the sine–phi surface

current

Consider approximating a sine–phi surface current
distribution on q = a with N infinitely long wires per
quadrant. Owing to the symmetry of the problem the
following calculations can be restricted to the first quad-
rant. From Eq. (D.1), the total integrated surface cur-
rent on q = a over the interval / = 0 to p/2 is aFo.
This area is divided into N equal parts—bound by
N + 1 angles aj, beginning with a0 = 0 and ending with
aN = p/2—so that each wire carries an equivalent inte-
grated surface current aFo/N. The angular position uj

of each wire is chosen to be the mid-point of the inte-
grated surface current over the interval [aj�1,aj] and sat-
isfies the conditions

Z uj

aj�1

Fo sin/ a d/ ¼
Z aj

uj

Fo sin/ a d/ ¼ aFo

2N
. ðD:6Þ

From Eq. (D.6), a general formula for all wire posi-
tions is found
25.845.66072.584.3

 (degrees)

Fig. 9. Bottom-left: the sine–phi surface current distribution in the
first quadrant and its approximation using N = 5 wires. Areas of equal
integrated surface current are separated by solid lines (shading
alternated for clarity); each area is divided in half (dashed line) and
the corresponding angle sets the wire position (circle). Top-right: the
cross-section of the associated winding pattern on q = a. The closed
versus open circles indicate current flow in opposite directions.
uj ¼ arccos 1� 2j� 1

2N


 �
; ðD:7Þ

which is equivalent to Eq. (13) noting that the stream
function of the sine–phi distribution is w (/) � cos/.

Eq. (D.7) is evaluated for j = 1, . . . ,N only. The 4N
wires that comprise the entire coil are located symmetri-
cally with a wire at each ±uj and ±(180� � uj). For
N = 1 the four wire positions are ±60� and ±120�. The
general principle is illustrated in Fig. 9 for the caseN = 5.
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